1600便攜式分光光度計與光電比色計相比,在結(jié)構(gòu)上分光光度計用單色器代替了濾光片,其它部分兩者比較相似。
?。ǎ﹩紊鳎簡紊魇侵敢粋€光學(xué)系統(tǒng),它比濾光片能更有效地提供帶寬窄的單色光。單色器的主要組件是玻璃棱鏡、復(fù)合濾光片或光柵。來自光源的光線,可直接通過單色器的狹縫,照到分光部件上。單色器的效率比普通濾光片高。在紫外和可見光范圍內(nèi),半寬度不超過1nm。
1.棱鏡單色器
從幾何光學(xué)我們知道,當(dāng)一束光從一種介質(zhì)射到另一種介質(zhì)時,在界面會發(fā)生折射和反射。設(shè)入射角為i,折射角為θ,則其折射率n為:n = Sini/sinθ
不同的光學(xué)材料具有不同的折射率,這是*的。即使使用同一種光學(xué)材料,以相同的人射角照射,若波長不同,得到的折射角也不一樣。透明物質(zhì)的折射率n和入射光波長的關(guān)系可以用下列經(jīng)驗式表示: n= A+B/λ2+C/λ4+…
式中A、B、C的數(shù)值與物質(zhì)的性質(zhì)有關(guān)。從式中可以看出,波長越長,折射率越小。一束復(fù)合光進入棱鏡,由于不同波長的光,其折射率不同,通過棱鏡后,復(fù)色光就按不同的波長分開來了,如圖所示
實驗證明,棱鏡的色散具有非線性,即①譜線彎曲;②不同波長區(qū)域色散效果不同,紅端色散差,紫端色散較好。雖然在實際應(yīng)用中的棱鏡單色器與圖示的不盡相同,然而它們的工作原理是一樣的。
2.光柵單色器
衍射光柵也可用作單色器。衍射光柵是由一系列刻劃在高光潔度反射表面上溝紋組成的。溝紋排列異常密集,每英寸長度上有15000或30000條。將光柵放在一平行光束里,光柵的一面被照亮,這一面可看作是塊非常小的反射鏡。
從溝紋反射鏡反射出的光線相重疊,發(fā)生干涉。另一方面,如果在光線方向上的溝紋條數(shù)是波長的整數(shù)倍時,光線就被溝紋分開,這種波就是同向的,射線被反射。當(dāng)它不是波長的整數(shù)倍時,光線被抵消,沒有反射現(xiàn)象。改變光線照到光柵上的角度,就可以改變反射光的波長。
1600便攜式分光光度計利用紫外光、可見光、紅外光和激光等測定物質(zhì) 的吸收光譜對物質(zhì)進行定性定量分析和物質(zhì)結(jié)構(gòu)分析的方法,稱為分光光度法或分光光度技術(shù),使用的儀器稱為分光光度計。1600便攜式分光光度計靈敏度高,測定速度快,應(yīng)用范圍廣,其中的紫外光和可見光分光光 度技術(shù)更是化學(xué)工業(yè)中*的基本手段,并大 量用于如離子膜法燒堿生產(chǎn)中精鹽水中r、Bf、CO-分析以及成品中NaCD3、At03的測定等。其檢測*一般可低至(1~ 10) @ 10- 5。但在實際應(yīng)用時,由于顯色反應(yīng)、顯色條件、實驗儀器和操作技 巧等因素的影響,造成一些偏差,影響了分析的準確性。下面重點討論外部因素對分析結(jié)果的影響及提高分析的靈敏度和準確度的途徑。
1600便攜式分光光度計常見誤差原因分析
1-1顯色反應(yīng)本身的誤差
不同的顯色反應(yīng)條件下,如有色物的穩(wěn)定性、顯 色劑的加入量、酸度、反應(yīng)時間等,對分析結(jié)果均有 一定的影響。
1-2儀器誤差
單色光不純、儀器電壓不穩(wěn)、靈敏度過高或過 低,吸光度< 0 2或> 0 8造成結(jié)果不準確;長時間 使用后,吸收池污染帶來偏差。
1-3分析操作不準確或不熟練
主要表現(xiàn)在儀器調(diào)零不準、吸收池選擇不當(dāng)、讀數(shù)不準,甚至錯誤操作等。
2應(yīng)用技巧
2-1放大或縮小倍數(shù)法
放大或縮小倍數(shù)法即選擇合適的吸光度測量范圍,在不同吸光度范圍內(nèi)讀數(shù)會引起不同程度的誤 差。為提高測定的準確度,應(yīng)選擇在較適合的吸光度范圍內(nèi)進行測定。計算表明,較適宜的吸光度范 圍為0 2~ 0 &如果被測溶液濃度過低,1600便攜式分光光度計吸光度低于0 2可采用增加比色皿厚度的方法進行測定;如果吸光度超過0 S可在比色時盡量采用比較薄的比色皿。當(dāng)然,這樣測定出的數(shù)值一定要進行折算,計算式為:折算后吸光度=折算前測定值@標準比色皿厚度A目前比色皿厚度。
例:測定某樣品中鐵的含量時,制作鐵標準曲線 時用的吸收池的厚度為2 cm。而由于樣品含鐵量 低,用2 cm吸收池,測定出的吸光度為0 15Q改用 3 cm吸收池,測出值為0 224折算后:
吸光度=折算前測定值@標準比色皿厚度+目 前比色皿厚度=0 224 x 2 A3= Q 149。
該方法實際上是避免標準曲線在較低或較高濃 度處偏離朗伯-比爾定律的有效手段。